Bayesian factor analysis with fat-tailed factors and its exact marginal likelihood
نویسندگان
چکیده
منابع مشابه
Exact Evaluation of Marginal Likelihood Integrals
Inference in Bayesian statistics involves the evaluation of marginal likelihood integrals. We present algebraic algorithms for computing such integrals exactly for discrete data of small sample size. The underlying statistical models are mixtures of independent distributions, or, in geometric language, secant varieties of Segre-Veronese varieties.
متن کاملBayesian and Iterative Maximum Likelihood Estimation of the Coefficients in Logistic Regression Analysis with Linked Data
This paper considers logistic regression analysis with linked data. It is shown that, in logistic regression analysis with linked data, a finite mixture of Bernoulli distributions can be used for modeling the response variables. We proposed an iterative maximum likelihood estimator for the regression coefficients that takes the matching probabilities into account. Next, the Bayesian counterpart...
متن کاملImplementing Likelihood-Based Inference for Fat-Tailed Distributions
The theoretical advancements in higher order likelihood-based inference methods have been tremendous over the past two decades. The application of these methods in the applied literature however has been far from widespread. A critical barrier to adoption has likely been the computational difficulties associated with the implementation of these methods. This paper provides the applied researche...
متن کاملEmpirical Likelihood Approach and its Application on Survival Analysis
A number of nonparametric methods exist when studying the population and its parameters in the situation when the distribution is unknown. Some of them such as "resampling bootstrap method" are based on resampling from an initial sample. In this article empirical likelihood approach is introduced as a nonparametric method for more efficient use of auxiliary information to construct...
متن کاملMarginal likelihood based model comparison in Fuzzy Bayesian Learning
In a recent paper [1] we introduced the Fuzzy Bayesian Learning (FBL) paradigm where expert opinions can be encoded in the form of fuzzy rule bases and the hyper-parameters of the fuzzy sets can be learned from data using a Bayesian approach. The present paper extends this work for selecting the most appropriate rule base among a set of competing alternatives, which best explains the data, by c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Multivariate Analysis
سال: 2009
ISSN: 0047-259X
DOI: 10.1016/j.jmva.2009.02.001